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Abstract
Purpose — The purpose of this paper is to explore the application of the mesh-free local radial basis
function collocation method (RBFCM) in solution of coupled heat transfer and fluid-flow problems.

Design/methodology/approach — The involved temperature, velocity and pressure fields are
represented on overlapping five nodded sub-domains through collocation by using multiquadrics
radial basis functions (RBF). The involved first and second derivatives of the fields are calculated from
the respective derivatives of the RBFs. The energy and momentum equations are solved through
explicit time stepping.

Findings — The performance of the method is assessed on the classical two dimensional de Vahl
Davis steady natural convection benchmark for Rayleigh numbers from 10 to 10°® and Prandt] number
0.71. The results show good agreement with other methods at a given range.

Originality/value — The pressure-velocity coupling is calculated iteratively, with pressure
correction, predicted from the local mass continuity equation violation. This formulation does not
require solution of pressure Poisson or pressure correction Poisson equations and thus much simplifies
the previous attempts in the field.

Keywords Flow, Convection, Pressure, Thermodynamics, Fluid dynamics
Paper type Research paper

1. Introduction

The most commonly used discrete approximate methods for solving systems of partial
differential equations (PDEs) in fluid-flow problems are the finite difference method,
the finite volume method, the finite element method, the spectral method and the
boundary element method (BEM). Despite the suitability of the enumerated methods
for solving fluid flow as well as other physical situations, there are still some
substantial difficulties in applying them to realistic, geometrically complex three
dimensional systems. The major problem is in creating a suitable mesh. The meshing
(polygonisation) is often the most time consuming part of the solution process and is
far from being fully automated. However, there is a rapidly emerging branch of
numerical methods, where there is no need to create a polygonisation, neither in the
domain nor on its boundary. The solution is represented on the arbitrarily distributed
set of nodes without any additional topological relations between them. These
meshfree methods represent a promising technique to avoid the meshing problems

The authors would like to express their gratitude to Slovenian Research Agency for support in
the framework of the projects Young Researcher Programme 1000-06-310232 (G.K.), J2-6403 and
199508 (B.S.).



(Atluri and Shen, 2002a, b; Atluri, 2004; Chen, 2002; Kansa, 1990a; Liu, 2003; Liu and
Gu, 2005).

A number of mesh-reduction techniques such as the dual reciprocity BEM with radial
basis functions (RBF) (Sarler and Kuhn, 1999), mesh-free techniques such as the dual
reciprocity method with fundamental solutions (Sarler, 2002), meshfree local Petrov
Galerkin methods (MLPG) (Atluri and Shen, 2002b, Lin and Atluri, 2001) have been
developed for transport phenomena and solution of the Navier-Stokes equations. This
paper is focused on the simplest class of mesh-free methods in development today, the
radial basis function collocation methods (RBFCM) (Buhmann, 2000; Sarler, 2002, 2007).

The fluid-flow problem is a global problem in general. In order to solve such global
problem, one needs to solve the global matrix (Sarler ef al., 2004; Sarler, 2005). Solving
matrices for global systems with fine mesh or complex geometries can become a major
numerical problem, therefore completely local scheme for solving fluid-flow problems
is proposed in the present paper. This method represents a local variant of the already
developed global RBFCM solution (Sarler, 2005), for coupled heat transfer and fluid
flow problems. This local variant has been previously developed for diffusion
problems (Sarler and Vertnik, 2006), convection-diffusion solid-liquid phase change
problems (Vertnik and Sarler, 2006) and subsequently successfully applied in
industrial process of direct chill casting (Vertnik et al, 2006). The spectra of physics
coped 1s extended to solution of coupled mass, energy and momentum equations in this
paper. Instead of solving the pressure Poisson equation or/and pressure correction
Poisson equation (Divo and Kassab, 2007), a much simplified local pressure-velocity
coupling (LPVC) algorithm is proposed. The new algorithm is tested on classical de
Vahl Davis (de Vahl Davis, 1983; Hortmann ef al, 1990; Manzari, 1999) natural
convection problem. The results of the method are assessed in terms of streamfunction
extreme, cavity Nusselt number, and mid-plane velocity components.

2. Governing equations

The steady-state natural convection problem is described by three coupled PDEs and
Boussinesq approximation. The PDEs are mass, momentum and energy conservation
equations where all material properties are considered to be constant. The equations
are given as:

V-v=0, ey

V(pvv) = —VP + V- (uVv) + 1, )
V- (pcy Tv) = V- (AVT), 3)
f=pll = Bp(T — Trep)l8, “4)

with v, P, T, A, ¢, 8, p, Bg, Tref, # and £ standing for velocity, pressure, temperature,
thermal conductivity, specific heat, gravitational acceleration, density, coefficient of
thermal expansion, reference temperature for Boussinesq approximation, viscosity and
body force, respectively. The problem is solved on a fixed domain ) with boundary I
where Dirichlet and Neumann boundary conditions for temperature might be used and
Dirichlet boundary conditions for velocity are used.
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3. Solution procedure
In order to solve the problem, the time dependent variant of equations (2) and (3) is
employed. The explicit time scheme is adopted to cope with the transience terms in
momentum and energy equations. The Navier-Stokes equations (1) and (2) are solved
iteratively. The LPVC algorithm, where pressure correction is estimated from local
mass continuity violation, is used to drive the intermediate velocity towards the
divergence-free velocity. The basic elements of the solution procedure are as follows:
In the first step, the velocity is estimated from the discretized transient form of
equation (2):

A At
V=vo+ " [=VPy 4+ V- (uVvg) +fo — V- (pvovo)], ®)

where V denotes velocity at time £, + At, v, Py denote velocity and pressure at time ¢,
and At stands for the time-step length. The calculated velocity ¥ does not satisfy the
mass continuity equation (1) in general. In order to couple mass continuity equation
with the momentum equation, an iteration process is used where in the first iteration,
the velocity and the pressure are set to:

A

v =V,

=1
prop, =1 (©)
where m stands for iteration index. To project the velocity into the divergence free
space, a correction term v is added:

VF"+v)=0 - V-v"=-V-v. (7
The velocity correction is assumed to be affected only by effect of the pressure
correction:

v=-2yp ®
p

where P stands for the pressure correction. The pressure correction Poisson equation
is constructed by applying the divergence over equation (8):

5P

VEP=LV-v" 9

VAR ©)

Instead of solving the equation (9) globally with the appropriate pressure correction

boundary conditions (Divo and Kassab, 2007), the pressure correction is assumed to be

linearly related to the Laplace of pressure correction. In the second step, the pressure
correction is therefore calculated as:

P~LV2p=L2Py.ym (10)
At
where L stands for characteristic length. The very important assumption (10) enables

for solving the problem completely locally. In the third step, the intermediate pressure
and velocity are corrected as:



Pm+1 Sy L ,Bp,
vm+1 =y — BHVﬁv (11)
p

where B stands for suitable relaxation parameter. If the criteria:
Vvl < g, a2

is not met than the iteration returns back to the equation (10), else the pressure-velocity
iteration is completed and the calculation proceeds to the next step.
The fourth step is to solve the transient form of the energy equation (3):

At
T =To+— [V-(AVTy) — V-(pc, Tovo)], 13)
20
where T and 7 denote temperature at time ¢y and fy + Af. The steady-state is achieved
when the criteria:
Tl < gp; To#0
[Tl T, 0

(14)
T<er; Ty=0

is met in all nodes. If the criteria (14) is not met, the body force is updated and
calculation returns back to equation (5). The simulation flowchart is shown in Figure 1.

4. Radial basis function collocation method

The pressure, velocity and temperature fields are interpolated on the coincident grid
points by Hardy’s multiquadrics RBF. The arbitrary function 6 is represented on each
of the local sub-domains as:

N
0(p) = > a,Au(p), (15)
n=1

with p,A,, o, and N standing for the position vector, the basis function, the
collocation coefficient and the number of the collocation points, respectively. Hardy’s
multiquadrics basis functions are defined as:

Ay (@) =\/r2P)+c23; ri=®—pw) (P~ Pn), (16)
/ N\
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Figure 1.
The calculation flowchart




HFF
18,7/8

872

where ¢ represents a dimensionless shape parameter. The scaling parameter 7/3 is set to
the maximum nodal distance of the sub-domain. The coefficients a,, are obtained from
the collocation condition which implies the exact satisfaction of the equation (15) in the
nodal points where equation (15) must hold. In case, the number of the nodes is the
same as the number of the terms in the series (15), the system simplifies to:

N
0(p) = 6= _ anAu(py), an
n=1
Au A]N (03] 01
= -, (18)
ANl ANN an GN

where A,; = A, (p;). Solution of the linear system of equation (18) provides the
collocation coefficients a,,. Spatial derivatives of the function 6 can be easily obtained
through derivation of the equation (15):

L =3 M) 19)
9o P nZIanapU n\P),

92 Yoo

oz, @) = ;anaz—uwpx (20)

where p,— , stands for Cartesian coordinates. All necessary derivatives to construct
the involved divergence, gradient and Laplace operators can be calculated through
equations (19) and (20). The integral of function 0 over p,, (used in the present context
in calculation of the stream function) can be evaluated as well:

N
[ oo, = > [ Mo 1)
n=1

All matrix elements A,; and coefficients «,, need to be evaluated only once before time
stepping begins.

Only the simplest sub-domain of five points is used within the overlapping
collocation sub-domain strategy of the present paper. The described collocation
method and sub-domain selection is schematically shown in Figure 2, where a five
noded collocation sub-domain is used to approximate the first and the second spatial
derivatives in the central node. The derivative instead of the function value is
prescribed at the boundary collocation points with the Neumann boundary conditions.
The equation (17) is replaced with:

% o =S e An(p) 22)
E pz—;ana’ﬁ 2(Pi),

in such points. The index ¢ stands for node where derivative is known.



5. Numerical examples

The classical de Vahl Davis (1983) natural convection problem is considered for
benchmarking purposes. The domain of the problem (Figure 3) is a closed air filled
(Prandtl number = 0.71) square cavity with differentially heated vertical walls
(AT = Ty — T¢) and insulated horizontal walls.

The steady-state is achieved through a time transient from the initial temperature,
pressure and velocity all set to zero. All results are stated in Cartesian coordinates and
standard dimensionless form (Wan et al, 2001):
:§7y:X7u:u@%7v:Mﬂ% _T TC7

L L A A Ty — T¢

A
r tpprZ’
where x, y stand for the dimensionless coordinates, #, v stand for the dimensionless
horizontal and vertical velocity components, W stands for the dimensionless
temperature and 7 stands for the dimensionless time. Prandtl and Rayleigh numbers
are calculated from the expressions:

x
(23)

pr=H2 (24)

Problem domain
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Figure 2.

Local collocation scheme
(left) and collocation
sub-domain selection
strategy (right)

Figure 3.
The problem description
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_ gBATL p?c

R
a v

(25)

where AT stands for maximum temperature difference and L stands for enclosure
length.

Non-permeable and no slip (due to consideration of viscid fluid) boundary
conditions are adopted on the whole boundary I™:

vr = 0. (26)

The results are presented in terms of stream functions and temperature contours in
Figure 4 and mid-plane velocities in Figure 5, respectively. The temperature contour
plot step is 0.05 for all cases while streamfunction contour plot step is 0.1 for Ra = 10°,
0.5 for Ra =10 1 for Ra = 10° and Ra = 10° and 5 for Ra = 10" and Ra = 105,
In order to enable a straightforward numerical comparison, the mid-plane velocity
values are stated in Table I, as well.

A comparison of our results (Table II) with the other similar attempts is done for the
maximum mid-plane velocities, the mid-point stream function value, and the average
Nusselt number on hot or cold wall where the results of the present study are compared
with de Vahl Davis (1983), Sadat and Couturier (2000), Wan et al (2001) and Sarler
(2005) the streamfunction  is calculated through integration of the velocity
component:

P(x,y) = / u(x, y)dy. 27)

The Nusselt number is calculated locally on the support of five collocation nodes
through expression:

_oW(x,y)

Nu(x, y) = Y

+ u(x, )W (x, ). (28)

Our simulations are performed on 41 X 41 (with Ny = 1,677), 81 X 81 (with
Npax = 6,557) and 101 X 101 (with Ny = 10,197) grid sizes, where Ny, stands for
the total number of the grid points. Additional check on the global mass
conservation of the method is done by considering the time dependent mass
continuity equation (1) globally, to check the numerical mass leakage. The following
equation is implemented:

1 Nmax
N2 VVar pt=0)=po, (29)

n=1

Pt + At) = p(t) — Atpo

where p(t) stands for time dependent global density. The global density change is
introduced as:

Ap = |po — p(N: AL, (30)
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where N, stands for the number of time-steps. The relative density changes Ap/p,
occurring as a function of different Rayleigh numbers for calculation with the grid
density 101 x 101 are stated in Table III. The time-step criteria e < 10~ ° is used in
all cases while pressure-velocity iteration criteria varies for different Rayleigh number
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Figure 5.
Mid-plane velocities
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(Table III). The time-step varies for different Rayleigh numbers, as well. The time-steps
were determined by seeking the convergent scenario. The relaxation parameter is set to
same value as dimensionless time-step in all cases. The number of pressure-velocity
iterations, time-steps and actual calculation time for different Rayleigh numbers and
grid sizes are stated in Table III, as well. All cases are calculated with RBF shape
parameter ¢ = 30. This issue is justified by the sensitivity study, given in the
Appendix.

5.1 Numerical implementation and discussion of the results

Numerical implementation is done in C+ + programming language in double precision
and compiled with Intel C++9.1 compiler. The LAPACK routines are used to solve the
LU decomposition. The parallelisation is implemented with OpenMP library with
maximum 1.85 X speedup factor achieved for two CPU cores. All calculations are done
on a laptop computer Toshiba Satellite 100, with duo core Intel 2.16 GHz processor and
1 Gb of RAM. Approximately, 1, 5 and 8 Mb of RAM storage are required for grid
densities 41 X 41,81 x 81 and 101 X 101. The pressure correction requires only one
step and therefore the algorithm needs small number of calculations per iteration cycle
and this makes the algorithm fast and robust. Each pressure-velocity coupling iteration
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Table II.
Comparison of the
present method with
previously published
results

Ra Vmax y Umax X Nu Pmid References/discretization
10° 3679  0.179 3634 0813 1.116 1.174  de Vahl Davis (1983)
3686  0.188 3489 0813 1.117 Wan et al. (2001)
3.566 3.544 1.165  Sarler (2005)

3991 0170 3931 0825 1101 1208 41 x 41
3699 0177 3653 0812 1098 1194 81 x 81
3695 0179 3645 0820 1089 1196 101 x 101

10* 19.51 0.120 16.24 0.823 2.234 5.098  de Vahl Davis (1983)
19.79 0.120 16.17 0.823 2.243 Wan et al. (2001)
19.04 15.80 4971 Sarler (2005)

19.81 0.120 16.24 0.825 2.075 5155 41 x 41
19.83 0.120 16.27 0.825 2.120 5167 81 x 81
20.03 0.120 16.45 0.830 2.258 5240 101 x 101

10° 68.22 0.066 34.81 0.855 4.510 9.142  de Vahl Davis (1983)
68.52 0.064 34.63 0.852 4.534 9.092  Sadat and Couturier (2000)
70.63 0.072 33.39 0.835 4.520 Wan et al. (2001)
67.59 32,51 8907  Sarler (2005)

67.65 0.070 33.67 0.850 4.624 8896 41 x 41
68.98 0.062 34.60 0.850 4813 9135 81 x 81
69.69 0.069 35.03 0.860 4511 9.278 101 x 101
106 216.75 0.038 65.33 0.851 8.798 1653 de Vahl Davis (1983)
219.41 0.038 64.43 0.852 8832 1629 Sadat and Couturier (2000)
22711 0.04 65.4 0.86 8.8 Wan et al. (2001)
211.67 61.55 1591 Sarler (2005)
195.98 0.045 63.73 0.850 6.1 15.15 41 x 41
21948 0.038 64.87 0.851 7.67 16.13 81 x 81
221.37 0.039 65.91 0.860 897 16.51 101 x 101
107 687.43 0.023 14568 0.888  16.59 2823 Sadat and Couturier (2000)
71448 0022  143.56 0922 16.65 Wan et al. (2001)
632.60 0.020  127.70 0925 1043 24.93 41 x 41
654.803  0.035  143.55 0902  14.70 2751 81 x 81
687.20 0.021 149.61 0900 1692 28.61 101 x 101
108 2180.1 0.011 31919 0943 3094 50.81 Sadat and Couturier (2000)
2259.08 0012 296.71 0.93 31.48 Wan et al. (2001)
2060.86 0.010  264.96 0939  29.33 44.85 81 x 81
2095.23 0.009 27849 0930 3212 4712 101 x 101

takes the same order of CPU time (¢p,;) as the adjacent time step calculation. The time
spent for pressure correction can be estimated from ¢p,; = ¢.Np,;/(INpyi + N¢). Good
agreement with other methods at a given range (Rayleigh number from 10° to 10® and
grid density with maximum 101 X 101 grid points) is achieved with the proposed
algorithm. Our method over-predicts reference results for low-Rayleigh numbers but
for higher Rayleigh numbers it under-predicts reference results. For Rayleigh number
Ra = 10® current method over-predicts all reference results. Similar behaviour is
observed for results with Ra = 10%, but for Ra = 10° and Ra = 10° our method
over-predicts only two of the three reference results. Finally, for Ra =107 and
Ra = 108 current method under-predicts both comparison results. High deviance from
results (Wan et al, 2001) at a high Rayleigh number is due to grid selection. The
present results are calculated on an entirely uniform grid. The results (Wan ef al., 2001)
are calculated on Gauss-Lobatto grid, which is a more suitable selection due to the
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highest velocities in the boundary layer (Figure 5). The effect is more intense with
the higher Rayleigh numbers and so the deviance between the results grows with the
higher Rayleigh numbers.

6. Conclusions

This paper explores the local RBFCM approach in solution of the coupled heat transfer
and fluid flow problems by using the simplified entirely local pressure correction. The
algorithm is very simple to implement numerically, fast and robust. The algorithm can
be efficiently and straightforwardly parallelized because of its local subdomain nature
and explicit time stepping. This two important features enables the exploiting of
the full power of the multi core platforms. A remark should be made in the sense that
there are possible difficulties when working with finer grids than in present paper. The
proposed algorithm includes only few surrounding points to calculate pressure
correction. The present pressure correction calculation (calculated only from closest
neighbouring points) may not be efficient enough when working with finer grids
(200 x 200 or finer) and high-Rayleigh numbers (more than 5 x 10°). Possible
upgrade is to include wider domain of points in the pressure correction calculation.
These topics are subject of further investigations, as well as focus on more complex
geometries and more complex physical models (porous media, solidification, . . .), which
seem to be quite simple to numerically implement in the present context. The
investigation on the adaptive time dependent grid to enhance the accuracy and to avoid
the eventual stability problems, the implementation of the characteristic-based-split
algorithm (Massarotti et al, 1998), the implementation of different sub-domain
strategies, etc. all represents open issues, connected with the present method.
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Appendix. The influence of the dimensionless shape parameter on the results

The convergence of the present RBF method was systematically studied in previous works for
diffusive and convective diffusive problems (Sarler and Vertnik, 2006; Vertnik and Sarler, 2006),
where it has been shown that the method converges.

The dimensionless shape parameter is set to 30 in all calculations in the preset paper. In order
to justify this selection, a preliminary analysis has been done, described in this Appendix. For
grid density 81 X 81, all cases have been recalculated with different selection of the shape
parameter. In order to measure the influence of the shape parameter on the results, the following
deviation has been introduced:
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where max stands for maximum and vyo stands for velocity calculated with ¢ = 120. From

Figure Al, it is evident that ¢ = 30 represents a reasonable choice for the shape parameter in all
882 cases. The results are not sensitive to increase of the value of the shape parameter over 30,
however, setting high-shape parameter produces ill-conditioned matrix in equation (18). The
choice of shape parameter represents a compromise between accuracy and ill-condition of the
matrices, respectively. This behaviour has been observed also in our previous works (Sarler and
Vertnik, 2006; Vertnik and Sarler, 2006).
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